Matrix completion and tensor rank
نویسندگان
چکیده
منابع مشابه
Tensor completion using total variation and low-rank matrix factorization
In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimi...
متن کاملLow-Rank Matrix and Tensor Completion via Adaptive Sampling
We study low rank matrix and tensor completion and propose novel algorithms that employ adaptive sampling schemes to obtain strong performance guarantees. Our algorithms exploit adaptivity to identify entries that are highly informative for learning the column space of the matrix (tensor) and consequently, our results hold even when the row space is highly coherent, in contrast with previous an...
متن کاملFactor Matrix Nuclear Norm Minimization for Low-Rank Tensor Completion
Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix rank minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank mini...
متن کاملParallel matrix factorization for low-rank tensor completion
Higher-order low-rank tensors naturally arise in many applications including hyperspectral data recovery, video inpainting, seismic data reconstruction, and so on. We propose a new model to recover a low-rank tensor by simultaneously performing low-rank matrix factorizations to the all-mode matricizations of the underlying tensor. An alternating minimization algorithm is applied to solve the mo...
متن کاملFactor Matrix Trace Norm Minimization for Low-Rank Tensor Completion
Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix trace norm minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2015
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2015.1083565